I Theory of Elasticity.- 1. The Main Types of Strain in Elastic Solids.- 1.1 Equations of Linear Elasticity Theory.- 1.1.1 Hooke’s Law.- 1.1.2 Differential Form of Hooke’s Law. Principle of Superposition.- 1.2 Homogeneous Strains.- 1.2.1 An Elastic Body Under the Action of Hydrostatic Pressure.- 1.2.2 Longitudinal Strain with Lateral Displacements Forbidden.- 1.2.3 Pure Shear.- 1.3 Heterogeneous Strains.- 1.3.1 Torsion of a Rod.- 1.3.2 Bending of a Beam.- 1.3.3 Shape of a Beam Under Load.- 1.4 Exercises.- 2. Waves in Rods, Vibrations of Rods.- 2.1 Longitudinal Waves.- 2.1.1 Wave Equation.- 2.1.2 Harmonic Waves.- 2.2 Reflection of Longitudinal Waves.- 2.2.1 Boundary Conditions.- 2.2.2 Wave Reflection.- 2.3 Longitudinal Oscillations of Rods.- 2.4 Torsional Waves in a Rod. Torsional Vibrations.- 2.5 Bending Waves in Rods.- 2.5.1 The Equation for Bending Waves.- 2.5.2 Boundary Conditions. Harmonic Waves.- 2.5.3 Reflection of Waves. Bending Vibrations.- 2.6 Wave Dispersion and Group Velocity.- 2.6.1 Propagation of Nonharmonic Waves.- 2.6.2 Propagation of Narrow-Band Disturbances.- 2.7 Exercises.- 3. General Theory of Stress and Strain.- 3.1 Description of the State of a Deformed Solid.- 3.1.1 Stress Tensor.- 3.1.2 The Strain Tensor.- 3.1.3 The Physical Meaning of the Strain Tensor’s Components.- 3.2 Equations of Motion for a Continuous Medium.- 3.2.1 Derivation of the Equation of Motion.- 3.2.2 Strain-Stress Relation. Elasticity Tensor.- 3.3 The Energy of a Deformed Body.- 3.3.1 The Energy Density.- 3.3.2 The Number of Independent Components of the Elasticity Tensor.- 3.4 The Elastic Behaviour of Isotropic Bodies.- 3.4.1 The Generalized Hooke’s Law for an Isotropic Body.- 3.4.2 The Relationship Between Lamé’s Constants and E and v.- 3.4.3 The Equations of Motion for an Isotropic Medium.- 3.5 Exercises.- 4. Elastic Waves in Solids.- 4.1 Free Waves in a Homogeneous Isotropic Medium.- 4.1.1 Longitudinal and Transverse Waves.- 4.1.2 Boundary Conditions for Elastic Waves.- 4.2 Wave Reflection at a Stress-Free Boundary.- 4.2.1 Boundary Conditions.- 4.2.2 Reflection of a Horizontally Polarized Wave.- 4.2.3 The Reflection of Vertically Polarized Waves.- 4.2.4 Particular Cases of Reflection.- 4.2.5 Inhomogeneous Waves.- 4.3 Surface Waves.- 4.3.1 The Rayleigh Wave.- 4.3.2 The Surface Love Wave.- 4.3.3 Some Features of Love’s Waves.- 4.4 Exercises.- 5. Waves in Plates.- 5.1 Classification of Waves.- 5.1.1 Dispersion Relations.- 5.1.2 Symmetric and Asymmetric Modes.- 5.1.3 Cut-Off Frequencies of the Modes.- 5.1.4 Some Special Cases.- 5.2 Normal Modes of the Lowest Order.- 5.2.1 Quasi-Rayleigh Waves at the Plate’s Boundaries.- 5.2.2 The Young and Bending Waves.- 5.3 Equations Describing the Bending of a Thin Plate.- 5.3.1 Thin Plate Approximation.- 5.3.2 Sophie Germain Equation.- 5.3.3 Bending Waves in a Thin Plate.- 5.4 Exercises.- II Fluid Mechanics.- 6. Basic Laws of Ideal Fluid Dynamics.- 6.1 Kinematics of Fluids.- 6.1.1 Eulerian and Lagrangian Representations of Fluid Motion.- 6.1.2 Transition from One Representation to Another.- 6.1.3 Convected and Local Time Derivatives.- 6.2 System of Equations of Hydrodynamics.- 6.2.1 Equation of Continuity.- 6.2.2 The Euler Equation.- 6.2.3 Completeness of the System of Equations.- 6.3 The Statics of Fluids.- 6.3.1 Basic Equations.- 6.3.2 Hydrostatic Equilibrium. Väisälä Frequency.- 6.4 Bernoulli’s Theorem and the Energy Conservation Law.- 6.4.1 Bernoulli’s Theorem.- 6.4.2 Some Applications of Bernoulli’s Theorem.- 6.4.3 The Bernoulli Theorem as a Consequence of the Energy-Conservation Law.- 6.4.4 Energy Conservation Law in the General Case of Unsteady Flow.- 6.5 Conservation of Momentum.- 6.5.1 The Specific Momentum Flux Tensor.- 6.5.2 Euler’s Theorem.- 6.5.3 Some Applications of Euler’s Theorem.- 6.6 Vortex Flows of Ideal Fluids.- 6.6.1 The Circulation of Velocity.- 6.6.2 Kelvin’s Circulation Theorem.- 6.6.3 Helmholtz Theorems.- 6.7 Exercises.- 7. Potential Flow.- 7.1 Equations for a Potential Flow.- 7.1.1 Velocity Potential.- 7.1.2 Two-Dimensional Flow. Stream Function.- 7.2 Applications of Analytical Functions to Problems of Hydrodynamics.- 7.2.1 The Complex Flow Potential.- 7.2.2 Some Examples of Two-Dimensional Flows.- 7.2.3 Conformal Mapping.- 7.3 Steady Flow Around a Cylinder.- 7.3.1 Application of Conformal Mapping.- 7.3.2 The Pressure Coefficient.- 7.3.3 The Paradox of d’Alembert and Euler.- 7.3.4 The Flow Around a Cylinder with Circulation.- 7.4 Irrotational Flow Around a Sphere.- 7.4.1 The Flow Potential and the Particle Velocity.- 7.4.2 The Induced Mass.- 7.5 Exercises.- 8. Flows of Viscous Fluids.- 8.1 Equations of Flow of Viscous Fluid.- 8.1.1 Newtonian Viscosity and Viscous Stresses.- 8.1.2 The Navier-Stokes Equation.- 8.1.3 The Viscous Force.- 8.2 Some Examples of Viscous Fluid Flow.- 8.2.1 Couette Flow.- 8.2.2 Plane Poiseuille Flow.- 8.2.3 Poiseuille Flow in a Cylindrical Pipe.- 8.2.4 Viscous Fluid Flow Around a Sphere.- 8.2.5 Stokes’ Formula for Drag.- 8.3 Boundary Layer.- 8.3.1 Viscous Waves.- 8.3.2 The Boundary Layer. Qualitative Considerations.- 8.3.3 Prandl’s Equation for a Boundary Layer.- 8.3.4 Approximate Theory of a Boundary Layer in a Simple Case.- 8.4 Exercises.- 9. Elements of the Theory of Turbulence.- 9.1 Qualitative Considerations. Hydrodynamic Similarity.- 9.1.1 Transition from a Laminar to Turbulent Flow.- 9.1.2 Similar Flows.- 9.1.3 Dimensional Analysis and Similarity Principle.- 9.1.4 Flow Around a Cylinder at Different Re.- 9.2 Statistical Description of Turbulent Flows.- 9.2.1 Reynolds’ Equation for Mean Flow.- 9.2.2 Turbulent Viscosity.- 9.2.3 Turbulent Boundary Layer.- 9.3 Locally Isotropic Turbulence.- 9.3.1 Properties of Developed Turbulence.- 9.3.2 Statistical Properties of Locally Isotropic Turbulence.- 9.3.3 Kolmogorov’s Similarity Hypothesis.- 9.4 Exercises.- 10. Surface and Internal Waves in Fluids.- 10.1 Linear Equations for Waves in Stratified Fluids.- 10.1.1 Linearization of the Hydrodynamic Equations.- 10.1.2 Linear Boundary Conditions.- 10.1.3 Equations for an Incompressible Fluid.- 10.2 Surface Gravity Waves.- 10.2.1 Basic Equations.- 10.2.2 Harmonic Waves.- 10.2.3 Shallow- and Deep-Water Approximations.- 10.2.4 Wave Energy.- 10.3 Capillary Waves.- 10.3.1 “Pure” Capillary Waves.- 10.3.2 Gravity-Capillary Surface Waves.- 10.4 Internal Gravity Waves.- 10.4.1 Introductory Remarks.- 10.4.2 Basic Equation for Internal Waves. Boussinesq Approximation.- 10.4.3 Waves in an Unlimited Medium.- 10.5 Guided Propagation of Internal Waves.- 10.5.1 Qualitative Analysis of Guided Propagation.- 10.5.2 Simple Model of an Oceanic Waveguide.- 10.5.3 Surface Mode. “Rigid Cover” Condition.- 10.5.4 Internal Modes.- 10.6 Exercises.- 11. Waves in Rotating Fluids.- 11.1 Inertial (Gyroscopic) Waves.- 11.1.1 The Equation for Waves in a Homogeneous Rotating Fluid.- 11.1.2 Plane Harmonic Inertial Waves.- 11.1.3 Waves in a Fluid Layer. Application to Geophysics.- 11.2 Gyroscopic-Gravity Waves.- 11.2.1 General Equations. The Simplest Model of a Medium.- 11.2.2 Classification of Wave Modes.- 11.2.3 Gyroscopic-Gravity Waves in the Ocean.- 11.3 The Rossby Waves.- 11.3.1 The Tangent of ?-Plane Approximation.- 11.3.2 The Barotropic Rossby Waves.- 11.3.3 Joint Discussion of Stratification and the ?-Effect.- 11.3.4 The Rossby Waves in the Ocean.- 11.4 Exercises.- 12. Sound Waves.- 12.1 Plane Waves in Static Fluids.- 12.1.1 The System of Linear Acoustic Equations.- 12.1.2 Plane Waves.- 12.1.3 Generation of Plane Waves. Inhomogeneous Waves.- 12.1.4 Sound Energy.- 12.2 Sound Propagation in Inhomogeneous Media.- 12.2.1 Plane Wave Reflection at the Interface of Two Homogeneous Media.- 12.2.2 Some Special Cases. Complete Transparency and Total Reflection.- 12.2.3 Energy and Symmetry Considerations.- 12.2.4 A Slowly-Varying Medium. Geometrical-Acoustics Approximation.- 12.2.5 Acoustics Equations for Moving Media.- 12.2.6 Guided Propagation of Sound.- 12.3 Spherical Waves.- 12.3.1 Spherically-Symmetric Solution of the Wave Equation.- 12.3.2 Volume Velocity or the Strength of the Source. Reaction of the Medium.- 12.3.3 Acoustic Dipole.- 12.4 Exercises.- 13. Magnetohydrodynamics.- 13.1 Basic Concepts of Magnetohydrodynamics.- 13.1.1 Fundamental Equations.- 13.1.2 The Magnetic Pressure. Freezing of the Magnetic Field in a Fluid.- 13.1.3 The Poiseuille (Hartmann) Flow.- 13.2 Magnetohydrodynamic Waves.- 13.2.1 Alfvén Waves.- 13.2.2 Magnetoacoustic Waves.- 13.2.3 Fast and Slow Magnetoacoustical Waves.- 13.3 Exercises.- 14. Nonlinear Effects in Wave Propagation.- 14.1 One-Dimensional Nonlinear Waves.- 14.1.1 The Nonlinearity Parameter.- 14.1.2 Model Equation. Generation of Second Harmonics.- 14.1.3 The Riemann Solution. Shock Waves.- 14.1.4 Dispersive Media. Solitons.- 14.2 Resonance Wave Interaction.- 14.2.1 Conditions of Synchronism.- 14.2.2 The Method of Slowly-Varying Amplitudes.- 14.2.3 Multiwave Interaction.- 14.2.4 Nonlinear Dispersion.- 14.3 Exercises.- Appendix: Tensors.- Bibliographical Sketch.