Siebtes Kapitel Chemische Bindung und Ferromagnetismus.- 1. Einleitung.- 2. Chemische Bindung.- 2.1. Die Grundtypen der chemischen Bindung.- 2.2. Die quantenmechanische Deutung der chemischen Bindung.- 2.3. Das quantenmechanische N-Körperproblem.- 2.4. Energetische Betrachtungen zur chemischen Bindung und zum Ferromagnetismus.- 3. Quantentheorie des Ferromagnetismus.- 3.1. Allgemeines.- 3.2. Die drei Grundregeln für den Ferromagnetismus der Übergangsmetalle.- 3.3. Alternativvorstellungen zur Theorie des Ferromagnetismus.- 4. Methoden zur quantitativen Behandlung des quantenmechanischen N-Körperproblems.- 4.1. Die Einteilchenzustände.- 4.2. Das Hartree-Fock-Verfahren.- 4.3. Die Methode der Überlagerung von Konfigurationen.- 5. SchluBbemerkungen.- Literatur.- Achtes Kapitel Magnetisierungskurve der Ferromagnetika. I. Mikromagnetische Grundlagen, Einmündung in die ferromagnetische Sättigung und Nachwirkungseffekte.- 1. Einleitung.- 2. Thermodynamische Grundlagen.- 3. Das Gibbssche Potential eines Ferromagnetikums.- 3.1. Isotrope Potentiale.- a) Das magnetostatische Potential.- b) Das magnetische Streufeldpotential.- c) Die Austauschenergie.- 3.2. Anisotrope Potentiale.- a) Die Kristallenergie.- b) Das elastische Potential.- c) Die magnetostriktiven Verzerrungen und das magnetoelastische Potential.- 4. Die mikromagnetischen Grundgleichungen.- 5. Anwendungen der mikromagnetischen Grundgleichungen.- 5.1. Bloch-Wände.- 5.2. Néel-Wände.- 5.3. Die Bereichsstruktur.- 5.4. Die Lösung des Eigenspannungsproblems bei Bloch-Wänden.- a) Berechnung einer (001)-180°-Bloch-Wand.- b) Spannungs-Dehnungs-Beziehungen für ebene Domänenwände bei elastischer Isotropie.- c) Die ideale Bloch-Wand—Dicke.- d) Die wirkliche Bloch-Wand—Dicke.- 5.5. Die Wechselwirkung zwischen Blochschen Wänden und inneren Spannungen.- a) Anwendung der Peach-Koehlerschen Beziehung.- b) Berechnung der Koerzitivfeldstärke elastischer Dipole.- 5.6. Der Einfluß von Gitterkrümmungen auf die Magnetisierung.- 5.7. Volumdilatationen und magnetisches Streufeld.- 6. Anwendung der Brownschen Näherung zur Berechnung von Magnetisierungszuständen.- 6.1. Allgemeine Theorie der Einmündung in die ferromagnetische Sättigung.- 6.2. Berechnung der Fourier-Transformierten $${\tilde g_i}$$.- a) Transformation der magnetoelastischen Kopplungsenergie.- b) Berechnung von $${\tilde \sigma ''^{G{\text{ }}P}}$$ mit Hilfe des Inkompatibilitätstensors.- ?) Allgemeine Theorie.- ?) Anwendung auf elastische Dipole.- ?) Dilatationszentrum (Zwischengitteratom).- ?) Geradlinige Versetzungsdipole.- 6.3. Die Feldstärkeabhängigkeit des Einmündungsgesetzes.- a) Austauschkopplung und Versetzungsanordnung.- b) Das Einmündungsgesetz bei Anwesenheit von Versetzungsdipolen.- c) Die Magnetisierung in der Umgebung von Versetzungen.- 6.4. Das magnetische Potential im Gebiet der Einmündung in die ferromagnetische Sättigung.- 6.5. Mikromagnetische Theorie der Anfangspermeabilität.- a) Theoretische Grundlagen.- b) Anwendung auf einen ‹100›-Nickeleinkristall.- 6.6. Die Magnetisierung in der Umgebung unmagnetischer Einschlüsse in Ferromagnetika.- 7. Zur Theorie der ferromagnetischen Nachwirkung.- 7.1. Verschiedene Nachwirkungstypen.- a) Orientierungsnachwirkung.- b) Diffusionsnachwirkung.- c) Kombinierte Diffusions- und Orientierungsnachwirkung.- d) Thermische Nachwirkung (Jordan-Nachwirkung).- e) Bloch-Wand-Kriechen.- 7.2. Nachwirkungsfeldstärke, reversible und irreversible Nachwirkung.- a) Definitionen.- b) Die Zeitabhängigkeit des Nachwirkungsfeldes.- ?) Orientierungsnachwirkung.- ?) Diffusionsnachwirkung.- ?) Kombinierte Orientierungs-Diffusionsnachwirkung.- ?) Thermische Nachwirkung.- ?) Bloch-Wand-Kriechen.- 7.3. Orientierungsnachwirkung in Nickel.- a) Berechnung der Stabilisierungsenergie.- ?) Fehlstellen mit einer ‹100›-Symmetrieachse.- ?) Fehlstellen mit einer ‹100›-Symmetrieachse.- b) Die Bewegungsgleichung der Bloch-Wand. Die Stabilisierungsfeldstärke.- c) Anwendungen und Experimente.- Literatur.- Neuntes Kapitel Magnetisierungskurve der Ferromagnetika. II. Magnetisierungskurve und magnetische Hysterese ferromagnetischer Einkristalle.- 1. Einleitung.- 1.1. Vorbemerkungen.- 1.2. Beschreibung der Magnetisierungskurve.- 1.2.1. Verlauf und Kenngrößen der Magnetisierungskurve.- 1.2.2. Andere Darstellungsweisen der Magnetisierungskurve.- 1.3. Die Bereichsaufteilung.- 1.3.1. Beschreibung.- 1.3.2. Theoretische und experimentelle Belege für die Existenz magnetischer Elementarbereiche.- 1.3.3. Gültigkeitsgrenzen der Bereichsvorstellung.- 1.4. Ausgangssituation und Zielsetzung.- Literatur.- 2. Magnetisierungsprozesse.- 2.1. Grundsätzliches.- 2.2. Bewegung von Bloch-Wänden (dvi).- 2.2.1. Allgemeine Zusammenhänge.- 2.2.2. Verschiebung ebener Bloch-Wände.- 2.2.3. Bloch-Wand-Wölbung.- 2.3. Drehprozesse (dei).- 2.3.1. Homogene Drehprozesse in Einbereichskristallen.- 2.3.2. Drehprozesse in großen Kristallen.- 2.4. Der Paraprozeß (dJS).- 2.5. Auftreten der verschiedenen Magnetisierungsprozesse beim Durchlaufen der Magnetisierungskurve, insbesondere der Neukurve.- a) Magnetisch mehrachsige, reale Einkristalle; Feld nicht in einer ausgezeichneten Richtung.- b) Ideale Einkristalle.- 2.6. Einige Bemerkungen zur Berechnung von Magnetisierungskurven.- Literatur.- 3. Die Magnetisierungskurven idealer Einkristalle.- 3.1. Grundlagen der Phasentheorie.- 3.1.1. Voraussetzungen und Vereinfachungen bei der Rechnun.- 3.1.2. Methode.- 3.1.3. Gültigkeitsgrenzen der Phasentheorie.- 3.2. Die Magnetisierungskurven ebener, magnetisch einachsiger Kristalle.- 3.2.1. Einphasengebiet.- 3.2.2. Zweiphasengebiet.- a) Anschauliche Betrachtungsweise.- b) Berechnung nach dem Minimalprinzip.- 3.2.3. Vergleich mit dem Experiment sowie einige Folgerungen.- 3.3. Die Magnetisierungskurven ebener Proben mit vier Vorzugsrichtungen in der Probenebene.- 3.3.1. Einphasengebiet.- 3.3.2. Zweiphasengebiet.- 3.3.3. Vierphasengebiet.- 3.3.4. Vergleich mit dem Experiment.- 3.4. Vergleich der in den Abschnitten 3.2 und 3.3 gefundenen Ergebnisse sowie einige Folgerungen.- 3.5. Der allgemeine Fall.- Literatur.- 4. Elementarprozesse irreversibler Magnetisierungsänderungen.- 4.1. Allgemeine Bemerkungen.- 4.2. Keimbildung.- 4.2.1. Definition einiger Kenngrößen.- 4.2.2. Die Kenngrößen HB und HW.- 4.2.3. Einfluß der Kenngrößen H0, HW und HB auf die Form der Hystereseschleife.- 4.3. Elementare Ursachen irreversibler Wandbewegungen.- 4.3.1. Die Sonderstellung der 180°-Bloch-Wände.- 4.3.2. Elementarprozesse der „Wandreibung“.- a) Kleine kugelförmige Einschlüsse (d ? ?).- ?) Fremdkörperanteil.- ?) Streufeldanteil.- b) Große kugelförmige Einschlüsse (d ? ?).- ?) Fremdkörperanteil bei Einschlüssen ohne Abschlußstruktur.- ?) Streufeldanteil.- Das Auftreten von Abschlußbereichen.- Einschlüsse mit Abschlußbereichen als Hindernisse bei der Bloch-Wand—Bewegung.- Literatur.- 5. Wechselwirkung zwischen Versetzungen und Bloch-Wänden.- 5.1. Grundsätzliches.- 5.1.1. Ein Beispiel.- 5.1.2. Die verschiedenen Berechnungsverfahren.- a) Methode von Vicena.- b) Methode von Rieder.- 5.1.3. Das Eigenspannungsverhalten der Bloch-Wände.- a) Übersicht.- b) Eigenspannungen einer (001)-180°-Bloch-Wand.- 5.2. Wichtige Beispiele.- 5.2.1. Ebene 180°-Bloch-Wand und geradlinige, zur Wandebene parallele Versetzung.- a) Berechnung mit Hilfe der Peach-Köhlerschen Formel.- ?) Zur x-Achse parallel liegende Versetzung mit beliebigem Burgersvektor.- ?) Schrauben- bzw. Stufenversetzung mit beliebiger Richtung in der xy-Ebene.- b) Berechnung der magnetoelastischen Kopplungsenergie in einem Spezialfall.- 5.2.2. Ebene Bloch-Wand mit durchstoßender geradliniger Versetzung.- 5.2.3. Ebene Bloch-Wand mit durchstoßender gekrümmter Versetzung.- 5.3. Streufeldeffekt bei der Wechselwirkung zwischen Bloch-Wänden und Versetzungen.- 5.3.1. Magnetisierungsverlauf in der Umgebung einer Stufenversetzung.- 5.3.2. Einfluß der Spinumordnung in der Umgebung einer Stufenversetzung auf die Bewegung einer (100)-180°-Bloch-Wand.- Literatur.- 6. Bereichsstruktur.- 6.1. Bereichsentstehung und Bereichsgeometrie.- 6.1.1. Einige grundsätzliche Bemerkungen.- 6.1.2. Ein einfaches Beispiel.- 6.1.3. Gleichgewichtslage der Bloch-Wände.- 6.1.4. Volumen- und Oberflächenstruktur.- 6.2. Methoden zur Beobachtung von Bereichs-Strukturen.- 6.3. Bereichsstruktur von Kobalt-Einkristallen.- 6.3.1. Volumenstruktur.- 6.3.2. Oberflächenstruktur.- 6.4. Bereichsstruktur von Siliziumeisen-Einkristallen.- 6.4.1. Der Néel-Kristall.- 6.4.2. Die Bereichsstruktur von unsymmetrisch orientierten {100}-Siliziumeisen-Einkristallen.- a) Unverformte Kristalle.- b) Verformte Kristalle.- 6.5. Bereichsstruktur von Nickel-Einkristallen.- Literatur.- 7. Bewegung von Bloch-Wänden in Realkristallen. Statistische Behandlung.- 7.1. Problemstellung.- 7.2. Das ?(x)-Diagramm.- 7.2.1. Bewegungsablauf einer Bloch-Wand im ?(x)-Diagramm.- 7.2.2. Kenngrößen des ?(x)-Verlaufs.- a) ?(x)-Verlauf zwischen zwei benachbarten Nulldurchgängen.- b) Häufigkeitsverteilung $$f\left( {\left| {\hat \Sigma } \right|,\Sigma } \right)$$ der Extremwerte $$\left| {\hat \Sigma } \right|$$.- c) Verteilung der Bloch-Wände.- 7.3. Zusammenhang zwischen dem Feld H ~ ? und der Bloch-Wand-Verschiebung xtot.- 7.4. Die Hysteresefunktion $$w\left( {\left| {\hat \Sigma } \right|,\Sigma } \right)$$.- 7.5. Berechnung der Kenngrößen des ?(x)-Verlaufs mit Hilfe statistischer Methoden.- 7.5.1. Einige Ergebnisse aus der Statistik.- a) Die Normalverteilung; einige Bezeichnungen und Sätze.- b) Abschätzung des Extremwerts xmax, den eine Zufallsgröße bei n Versuchen annimmt.- 7.5.2. Nulldurchgänge des ?(x)-Verlaufs.- 7.5.3. Häufigkeitsverteilung $$f\left( {\left| {\hat \Sigma } \right|} \right)$$ der Extremwerte $$\left| {\hat \Sigma } \right|$$.- 7.5.4. Berechnung der Häufigkeitsverteilung f(?) durch statistische Analyse des physikalischen Sachverhalts.- Literatur.- 8. Koerzitivfeldstärke.- 8.1. Vorbemerkungen.- 8.2. Berechnung der Koerzitivfeldstärke.- 8.2.1. Die Magnetisierungsänderung am HC-Punkt erfolgt durch Bloch-Wand—Bewegungen.- a) Allgemeines.- b) Magnetisierungsänderung durch Bewegung nichtdeformierbarer Bloch-Wände.- c) Magnetisierungsänderung durch Bewegung deformierbarer Bloch-Wände.- 8.2.2. Magnetisierungsänderung durch Drehprozesse.- 8.2.3. Magnetisierungsänderung durch gleichzeitig ablaufende Bloch-Wand–Bewegungen und Drehprozesse.- a) Magnetisch einachsige Kristalle.- b) Eine Methode zur Behandlung des allgemeinen Falles.- 8.3. Experimentelle Ergebnisse an Einkristallen.- 8.3.1. Nickel.- a) Temperaturabhängigkeit der Koerzitivfeldstärke.- ?) Unverformte Einkristalle.- ?) Einfluß einer plastischen Verformung auf den HC—T-Verlauf.- ?) Der Übergangsbereich.- b) Verformungsabhängigkeit der Koerzitivfeldstärke.- ?) Bereich II der Verfestigungskurve.- ?) Bereich I der Verfestigungskurve.- 8.3.2. Kobalt.- a) Temperaturabhängigkeit der Koerzitivfeldstärke.- b) Verformungsabhängigkeit der Koerzitivfeldstärke.- 8.3.3. Siliziumeisen und Eisen.- Literatur.- 9. Anfangssuszeptibilität.- 9.1. Vorbemerkungen.- 9.2. Berechnung der Anfangssuszeptibilität.- 9.2.1. Magnetisierungsänderung durch Bloch-Wand–Bewegungen.- a) Statistische Berechnung der Anfangssuszeptibilität bei 180°-Bloch-Wand–Bewegungen.- b) Anfangssuszeptibilität bei Bloch-Wand–Wölbungen.- 9.2.2. Anfangssuszeptibilität bei Drehprozessen.- 9.2.3. Magnetisierungsänderung durch Drehprozesse und Bloch-WandBewegungen.- a) Berechnung der Anfangssuszeptibilität magnetisch einachsiger Realkristalle mit Hilfe der Phasentheorie.- 9.3. Experimentelle Ergebnisse an Einkristallen.- 9.3.1. Die Anfangssuszeptibilität von Nickel-Einkristallen.- a) Temperaturabhängigkeit der Anfangssuszeptibilität.- ?) Unverformte Kristalle.- ?) Einfluß einer plastischen Verformung auf den Temperaturgang der Anfangssuszeptibilität.- ?) Deutung.- b) Verformungsabhängigkeit der Anfangssuszeptibilität von Nickel-Einkristallen.- c) Feld- und Verformungsabhängigkeit der reversiblen Suszeptibilität von Nickel-Einkristallen.- 9.3.2. Die Anfangssuszeptibilität von Kobalt-Einkristallen.- Literatur.- 10. Schlußwort.- 11. Anhang.- Literatur.- Namenverzeichnis.