, ,

Parasitic Orobanchaceae

Parasitic Mechanisms and Control Strategies

Paperback Engels 2015 9783642447075
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This book was written in response to significant recent advances in understanding the mechanisms of parasitism in the Orobanchaceae, and breakthroughs in the control of the parasitic weeds Striga and Orobanche. It consists of 26 contributions by internationally recognized leading scientists. The main book chapters are grouped into two parts:

·       Part I – The Orobanchaceae and Their Parasitic Mechanisms

·       Part II – The Weedy Orobanchaceae and Their Control

The first part provides cutting-edge information on all key aspects of plant parasitism, such as the structure, development and function of the haustorium; nutrient transfer and the physiology of the parasite-host association; host reaction to parasitic plants; seed production and germination; the strigolactones and host-parasite signaling mechanisms; the parasite genome, phylogenetics, evolution and epigenetics; and ecology. Topics of the second part include: the problem posed by the weedy parasites; population diversity and dynamics; molecular diagnosis of seed banks; and detailed discussion of the various management strategies, including agronomic, chemical and biotechnological approaches, as well as host breeding for resistance, allelopathy and biological control.

 

This book is intended for plant scientists, university lecturers and students, agronomists and weed specialists, breeders and farmers, extension personnel and experts in tropical and subtropical agriculture.

Specificaties

ISBN13:9783642447075
Taal:Engels
Bindwijze:paperback
Uitgever:Springer Berlin Heidelberg

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

<p>1. Introduction: The parasitic syndrome in higher plants </p><p>Henning S. Heide-Jørgensen</p><p>1.1 Parasitism in plants</p><p>1.2 Hemi- and holoparasitism</p><p>1.3 The haustorium</p><p>1.4 Dispersal and germination strategies</p><p>1.5  Host range</p><p>1.6  Geographical distribution</p><p>1.7  The parasitic plant families<br/>1.8. Parasite look-alike</p><p>References</p><p> </p><p>Part I: The Orobanchaceae and their parasitic mechanisms</p><p>2. The haustorium and the life cycles of parasitic Orobanchaceae<br/>Daniel M. Joel</p><p>            2.1   How do we define the haustorium in the Orobanchaceae?</p><p>            2.2    Life cycles of facultative and obligate Orobanchaceae</p><p>References</p><p>3. Functional structure of the mature haustorium</p><p>Daniel M. Joel</p><p>            3.1   Introduction</p><p>            3.2    Haustorium diversity</p><p>            3.3    Lateral and terminal haustoria</p><p>            3.4    Morphological features of terminal haustoria</p><p>            3.5    Roots of hemiparasites</p><p>            3.6    Morphological features of lateral haustoria</p><p>            3.7    The anatomical complexity of haustoria</p><p>            3.8    Tissue organization within the mature haustorium</p><p>            3.9    The conductive system </p><p>            3.10   Developmental aspects of the vascular system</p><p>            3.11   The mature endophyte</p><p>            3.12   The haustorial neck </p><p>            3.13   The base of lateral haustoria </p><p>            3.14   The base of terminal haustoria</p><p>            3.15   Exceptional haustoria</p><p>            3.16   Are haustoria homologous to roots? </p><p>            3.17   Concluding remarks<br/>References</p><p>4.   Haustorium initiation and early development<br/>Pradeepa C.G. Bandaranayake and John I. Yoder                                                               </p><p>            4.1     Introduction</p><p>            4.2     Early haustorium development</p><p>            4.3     Haustorium initiation factors</p><p>            4.4     Haustorium signal transduction</p><p>            4.5     Evolutionary origins</p><p>            4.6     Conclusions</p><p>References</p><p>5.   Haustorium invasion into host tissues <br/>Alejandro Pérez-de-Luque</p><p>            5.1    Introduction</p><p>            5.2    Preparing for penetration</p><p>            5.3    Penetration </p><p>            5.4    Duration of penetration</p><p>            5.5    Avoiding defences: tricks of war</p><p>            5.6    Conclusions</p><p>References</p><p> </p><p>6.  The physiology of the established parasite-host association<br/>James H. Westwood</p><p>            6.1  General physiological considerations</p><p>            6.2    Nutrient acquisition and transport </p><p>            6.3    Direction of movement</p><p>            6.4   Hormone interactions </p><p>            6.5   Macromolecules </p><p>            6.6   Conclusions</p><p>References</p><p>7.  Host reaction to attack by root parasitic plants <br/>Michael P. Timko and Julie D. Scholes</p><p>            7.1 Introduction</p><p>            7.2  General mechanisms of host resistance</p><p>            7.3 Histological characteristics of the host resistance responses</p><p>            7.4 Genetic Basis of Resistance </p><p>            7.5 Cell signalling and gene expression in host defence responses</p><p>            7.6 Conclusions and perspective</p><p>References</p><p> </p><p>8.  Seed production and dispersal in the Orobanchaceae <br/>Daniel M. Joel<br/>References</p><p>9.   The seed and the seedling<br/>Daniel M. Joel and Hilla Bar<br/>            9.1   Surface structure</p><p>            9.2   Anatomy </p><p>            9.3   Water absorption</p><p>            9.4   Site of signal perception</p><p>            9.5   Nutrient transfer during germination</p><p>            9.6   The seedling </p><p>            9.7   Concluding remarks</p><p>References</p><p>10.   Induction of germination<br/>Koichi Yoneyama, Carolien Ruyter-Spira, Harro Bouwmeester</p><p>            10.1   Introduction</p><p>            10.2   Strigolactones </p><p>            10.3   Non-strigolactone germination stimulants </p><p>            10.4   Can germination be a target in the control of parasitic weeds? </p><p>            10.5   Concluding remarks</p><p>References</p><p>11.  Germination eco-physiology<br/>Alistair J. Murdoch and Ermias Kebreab</p><p>            11.1   Introduction</p><p>            11.2   Seed survival in dry storage</p><p>            11.3   Seed survival in moist storage</p><p>            11.4   Dormancy and quiescence </p><p>            11.5   From relief of dormancy to the initiation of germination </p><p>            11.6   Germination </p><p>            11.7   Conclusion</p><p>References</p><p>12.  Are karrikin signalling mechanisms relevant to strigolactone perception?<br/>David C. Nelson</p><p>            12.1   Introduction</p><p>            12.2   Karrikins, germination stimulants found in smoke</p><p>            12.3   Regulation of plant development by karrikins and strigolactones</p><p>            12.4   Karrikin and strigolactone responses are MAX2-dependent</p><p>            12.5   KAI2 and D14 are required for specific responses to karrikins and strigolactones</p><p>            12.6   Common elements of karrikin, strigolactone, and gibberellin signalling</p><p>            12.7   D14/DAD2 is a candidate receptor for strigolactones</p><p>            12.8   What can Arabidopsis thaliana tell us about parasitic weed germination? </p><p>            12.9   Conclusion</p><p>References</p><p> </p><p>13.  Changing host specificities: by mutational changes or epigenetic reprogramming?<br/>Toby J.A. Bruce and Jonathan Gressel</p><p>            13.1  Introduction</p><p>            13.2  Static evidence for intraspecific variation in host specificity</p><p>            13.3  Evidence for rapid dynamic intraspecific changes in host specificity</p><p>            13.4  Critically differentiating between classical genetic evolution and epigenetic adaptation</p><p>                        13.5    Does it matter to parasite management whether classical genetic evolution o epigenetic adaptation? </p><p>References</p><p> </p><p>14.  Phylogenetic relationships and evolutionary trends in Orobanchaceae <br/>Gerald M. Schneeweiss</p><p>            14.1   Introduction</p><p>            14.2   Phylogenetic relationships </p><p>            14.3   Phylogenetic relationships of weedy taxa </p><p>            14.4   Evolutionary trends: some examples </p>            14.5   Outlook<p></p><p>References</p><p>15.  Genomic evolution in Orobanchaceae <br/>Susann Wicke</p><p>            15.1  Introduction</p><p>            15.2  The nuclear genome </p><p>            15.3  The plastid genome</p><p>            15.4  The mitochondrial genome</p><p>            15.5  Horizontal DNA transfer</p><p>            15.6  Conclusions</p><p>References</p><p> </p><p>16.  Ecology of hemi-parasitic Orobanchaceae with special reference to their interaction with plant communities<br/>Duncan D. Cameron and Gareth K. Phoenix</p>            16.1   Introduction<p></p><p>            16.2   Interactions between parasitic plants and their hosts at the individual scale </p><p>            16.3   Orobanchaceae in plant communities: multiple impacts, multiple consequences </p><p>            16.4   Interactions across multiple trophic levels </p><p>            16.5    Parasitic plant impacts on nutrient cycling</p><p>            16.6    Conclusions and future directions</p><p>References</p><p> </p><p>Part II: The weedy Orobanchaceae and their control</p><p>17.  Weedy Orobanchaceae – The problem<br/>Jonathan Gressel and Daniel Joel<sup></sup></p><p>18.  The parasitic weeds of the Orobanchaceae <br/>Chris Parker</p><p>            18.1   Introduction</p><p>            18.2  The weedy broomrapes: Orobanche and Phelipanche species</p><p>            18.3   The weedy witchweeds: Striga species </p><p>            18.4   Alectra species </p><p>            18.5    Rhamphicarpa fistulosa  </p><p>            18.6   Other Orobanchaceae occasionally proving weedy </p><p>            18.7   Conclusion</p><p>References</p>19.  Population diversity and dynamics of parasitic weeds<br/>Belén Román<p></p><p>            19.1    Introduction</p><p>            19.2   Genetic diversity and population dynamics</p><p>            19.3   Impacts of life history on population demography and genetics </p>            19.4   Future prospects<p></p><p>References</p><p>20.  Molecular diagnosis of parasite seed banks<br/>Jane Prider,  Kathy Ophel Keller and  Alan McKay</p><p>            20.1   Introduction</p><p>            20.2   Sample collection </p><p>            20.3   Test development</p><p>            20.4   Test validation</p><p>            20.5   Test applications </p><p>            20.6   Other applications</p><p>            20.7   Conclusions</p><p>References</p><p>21.  Marker-assisted and physiology-based breeding for resistance to Orobanchaceae <br/>Begoña Pérez-Vich, Leonardo Velasco, Patrick J. Rich and Gebisa Ejeta</p><p>            21.1  Introduction </p><p>            21.2  Physiology-based breeding</p><p>            21.3  Marker assisted breeding</p><p>References</p><p> </p><p>22.   Integrated agronomic management of parasitic weed seed banks <br/>Yaakov Goldwasser and Jonne Rodenburg</p><p>            22.1  Introduction< </p><p>            22.2  Phytosanitary measures</p><p>            22.3  Reduction of parasite seed production and crop damage </p><p>            22.4  Methods to reduce existing seed banks </p><p>            22.5  Integrating agronomic management practices</p><p>            22.6   Conclusions</p><p>References</p><p>23.  Chemical control<br/>Hanan Eizenberg, Joseph Hershenhorn, Jhonathan H. Ephrath, and Fred Kanampiu</p><p>            23.1    Introduction -the complexity of chemical control of parasitic weeds</p><p>            23.2   Herbicides </p><p>            23.3   The use of herbicides and fumigants </p><p>            23.4   Models for optimizing herbicide application</p><p>            23.5   Broomrape control by herbicide-resistant crops</p><p>            23.6   New and future approaches</p><p>            23.7   Conclusions</p><p>References</p><p>24.  Biotechnologies for directly generating crops resistant to parasites<br/>Jonathan Gressel</p><p>            24.1   Introduction</p><p>            24.2   Target site herbicide resistances </p><p>            24.3   When will the parasites evolve herbicide resistance? </p><p>            24.4   Biotechnologically directly conferring crop resistance to the parasites </p><p>            24.5   Other biotechnological approaches </p><p>            24.6   Conclusions</p><p>References</p><p>25.  Allelopathy <br/>John A. Pickett, Antony M. Hooper, Charles A.O. Midega and Zeyaur R. Khan</p><p>            25.1   Introduction</p><p>            25.2   Allelopathic mechanism by which Desmodium controls Striga in maize</p><p>            25.3   Long term needs</p><p>            25.4 Conclusions</p><p>References</p><p>26.  Biocontrol<br/>Alan K. Watson</p><p>            26.1 Introduction</p>            26.2 Insects attacking broomrapes and witchweeds <p></p><p>            26.3 Biocontrol of parasitic weeds with microorganisms </p><p>            26.4 Path to commercialization of a Striga bioherbicide</p><p>            26.5 Conclusions and future possibilities</p><p>References</p><p> </p><p>Index</p><p></p>

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Parasitic Orobanchaceae