<p>1. Introduction: The parasitic syndrome in higher plants </p><p>Henning S. Heide-Jørgensen</p><p>1.1 Parasitism in plants</p><p>1.2 Hemi- and holoparasitism</p><p>1.3 The haustorium</p><p>1.4 Dispersal and germination strategies</p><p>1.5 Host range</p><p>1.6 Geographical distribution</p><p>1.7 The parasitic plant families<br/>1.8. Parasite look-alike</p><p>References</p><p> </p><p>Part I: The Orobanchaceae and their parasitic mechanisms</p><p>2. The haustorium and the life cycles of parasitic Orobanchaceae<br/>Daniel M. Joel</p><p> 2.1 How do we define the haustorium in the Orobanchaceae?</p><p> 2.2 Life cycles of facultative and obligate Orobanchaceae</p><p>References</p><p>3. Functional structure of the mature haustorium</p><p>Daniel M. Joel</p><p> 3.1 Introduction</p><p> 3.2 Haustorium diversity</p><p> 3.3 Lateral and terminal haustoria</p><p> 3.4 Morphological features of terminal haustoria</p><p> 3.5 Roots of hemiparasites</p><p> 3.6 Morphological features of lateral haustoria</p><p> 3.7 The anatomical complexity of haustoria</p><p> 3.8 Tissue organization within the mature haustorium</p><p> 3.9 The conductive system </p><p> 3.10 Developmental aspects of the vascular system</p><p> 3.11 The mature endophyte</p><p> 3.12 The haustorial neck </p><p> 3.13 The base of lateral haustoria </p><p> 3.14 The base of terminal haustoria</p><p> 3.15 Exceptional haustoria</p><p> 3.16 Are haustoria homologous to roots? </p><p> 3.17 Concluding remarks<br/>References</p><p>4. Haustorium initiation and early development<br/>Pradeepa C.G. Bandaranayake and John I. Yoder </p><p> 4.1 Introduction</p><p> 4.2 Early haustorium development</p><p> 4.3 Haustorium initiation factors</p><p> 4.4 Haustorium signal transduction</p><p> 4.5 Evolutionary origins</p><p> 4.6 Conclusions</p><p>References</p><p>5. Haustorium invasion into host tissues <br/>Alejandro Pérez-de-Luque</p><p> 5.1 Introduction</p><p> 5.2 Preparing for penetration</p><p> 5.3 Penetration </p><p> 5.4 Duration of penetration</p><p> 5.5 Avoiding defences: tricks of war</p><p> 5.6 Conclusions</p><p>References</p><p> </p><p>6. The physiology of the established parasite-host association<br/>James H. Westwood</p><p> 6.1 General physiological considerations</p><p> 6.2 Nutrient acquisition and transport </p><p> 6.3 Direction of movement</p><p> 6.4 Hormone interactions </p><p> 6.5 Macromolecules </p><p> 6.6 Conclusions</p><p>References</p><p>7. Host reaction to attack by root parasitic plants <br/>Michael P. Timko and Julie D. Scholes</p><p> 7.1 Introduction</p><p> 7.2 General mechanisms of host resistance</p><p> 7.3 Histological characteristics of the host resistance responses</p><p> 7.4 Genetic Basis of Resistance </p><p> 7.5 Cell signalling and gene expression in host defence responses</p><p> 7.6 Conclusions and perspective</p><p>References</p><p> </p><p>8. Seed production and dispersal in the Orobanchaceae <br/>Daniel M. Joel<br/>References</p><p>9. The seed and the seedling<br/>Daniel M. Joel and Hilla Bar<br/> 9.1 Surface structure</p><p> 9.2 Anatomy </p><p> 9.3 Water absorption</p><p> 9.4 Site of signal perception</p><p> 9.5 Nutrient transfer during germination</p><p> 9.6 The seedling </p><p> 9.7 Concluding remarks</p><p>References</p><p>10. Induction of germination<br/>Koichi Yoneyama, Carolien Ruyter-Spira, Harro Bouwmeester</p><p> 10.1 Introduction</p><p> 10.2 Strigolactones </p><p> 10.3 Non-strigolactone germination stimulants </p><p> 10.4 Can germination be a target in the control of parasitic weeds? </p><p> 10.5 Concluding remarks</p><p>References</p><p>11. Germination eco-physiology<br/>Alistair J. Murdoch and Ermias Kebreab</p><p> 11.1 Introduction</p><p> 11.2 Seed survival in dry storage</p><p> 11.3 Seed survival in moist storage</p><p> 11.4 Dormancy and quiescence </p><p> 11.5 From relief of dormancy to the initiation of germination </p><p> 11.6 Germination </p><p> 11.7 Conclusion</p><p>References</p><p>12. Are karrikin signalling mechanisms relevant to strigolactone perception?<br/>David C. Nelson</p><p> 12.1 Introduction</p><p> 12.2 Karrikins, germination stimulants found in smoke</p><p> 12.3 Regulation of plant development by karrikins and strigolactones</p><p> 12.4 Karrikin and strigolactone responses are MAX2-dependent</p><p> 12.5 KAI2 and D14 are required for specific responses to karrikins and strigolactones</p><p> 12.6 Common elements of karrikin, strigolactone, and gibberellin signalling</p><p> 12.7 D14/DAD2 is a candidate receptor for strigolactones</p><p> 12.8 What can Arabidopsis thaliana tell us about parasitic weed germination? </p><p> 12.9 Conclusion</p><p>References</p><p> </p><p>13. Changing host specificities: by mutational changes or epigenetic reprogramming?<br/>Toby J.A. Bruce and Jonathan Gressel</p><p> 13.1 Introduction</p><p> 13.2 Static evidence for intraspecific variation in host specificity</p><p> 13.3 Evidence for rapid dynamic intraspecific changes in host specificity</p><p> 13.4 Critically differentiating between classical genetic evolution and epigenetic adaptation</p><p> 13.5 Does it matter to parasite management whether classical genetic evolution o epigenetic adaptation? </p><p>References</p><p> </p><p>14. Phylogenetic relationships and evolutionary trends in Orobanchaceae <br/>Gerald M. Schneeweiss</p><p> 14.1 Introduction</p><p> 14.2 Phylogenetic relationships </p><p> 14.3 Phylogenetic relationships of weedy taxa </p><p> 14.4 Evolutionary trends: some examples </p> 14.5 Outlook<p></p><p>References</p><p>15. Genomic evolution in Orobanchaceae <br/>Susann Wicke</p><p> 15.1 Introduction</p><p> 15.2 The nuclear genome </p><p> 15.3 The plastid genome</p><p> 15.4 The mitochondrial genome</p><p> 15.5 Horizontal DNA transfer</p><p> 15.6 Conclusions</p><p>References</p><p> </p><p>16. Ecology of hemi-parasitic Orobanchaceae with special reference to their interaction with plant communities<br/>Duncan D. Cameron and Gareth K. Phoenix</p> 16.1 Introduction<p></p><p> 16.2 Interactions between parasitic plants and their hosts at the individual scale </p><p> 16.3 Orobanchaceae in plant communities: multiple impacts, multiple consequences </p><p> 16.4 Interactions across multiple trophic levels </p><p> 16.5 Parasitic plant impacts on nutrient cycling</p><p> 16.6 Conclusions and future directions</p><p>References</p><p> </p><p>Part II: The weedy Orobanchaceae and their control</p><p>17. Weedy Orobanchaceae – The problem<br/>Jonathan Gressel and Daniel Joel<sup></sup></p><p>18. The parasitic weeds of the Orobanchaceae <br/>Chris Parker</p><p> 18.1 Introduction</p><p> 18.2 The weedy broomrapes: Orobanche and Phelipanche species</p><p> 18.3 The weedy witchweeds: Striga species </p><p> 18.4 Alectra species </p><p> 18.5 Rhamphicarpa fistulosa </p><p> 18.6 Other Orobanchaceae occasionally proving weedy </p><p> 18.7 Conclusion</p><p>References</p>19. Population diversity and dynamics of parasitic weeds<br/>Belén Román<p></p><p> 19.1 Introduction</p><p> 19.2 Genetic diversity and population dynamics</p><p> 19.3 Impacts of life history on population demography and genetics </p> 19.4 Future prospects<p></p><p>References</p><p>20. Molecular diagnosis of parasite seed banks<br/>Jane Prider, Kathy Ophel Keller and Alan McKay</p><p> 20.1 Introduction</p><p> 20.2 Sample collection </p><p> 20.3 Test development</p><p> 20.4 Test validation</p><p> 20.5 Test applications </p><p> 20.6 Other applications</p><p> 20.7 Conclusions</p><p>References</p><p>21. Marker-assisted and physiology-based breeding for resistance to Orobanchaceae <br/>Begoña Pérez-Vich, Leonardo Velasco, Patrick J. Rich and Gebisa Ejeta</p><p> 21.1 Introduction </p><p> 21.2 Physiology-based breeding</p><p> 21.3 Marker assisted breeding</p><p>References</p><p> </p><p>22. Integrated agronomic management of parasitic weed seed banks <br/>Yaakov Goldwasser and Jonne Rodenburg</p><p> 22.1 Introduction< </p><p> 22.2 Phytosanitary measures</p><p> 22.3 Reduction of parasite seed production and crop damage </p><p> 22.4 Methods to reduce existing seed banks </p><p> 22.5 Integrating agronomic management practices</p><p> 22.6 Conclusions</p><p>References</p><p>23. Chemical control<br/>Hanan Eizenberg, Joseph Hershenhorn, Jhonathan H. Ephrath, and Fred Kanampiu</p><p> 23.1 Introduction -the complexity of chemical control of parasitic weeds</p><p> 23.2 Herbicides </p><p> 23.3 The use of herbicides and fumigants </p><p> 23.4 Models for optimizing herbicide application</p><p> 23.5 Broomrape control by herbicide-resistant crops</p><p> 23.6 New and future approaches</p><p> 23.7 Conclusions</p><p>References</p><p>24. Biotechnologies for directly generating crops resistant to parasites<br/>Jonathan Gressel</p><p> 24.1 Introduction</p><p> 24.2 Target site herbicide resistances </p><p> 24.3 When will the parasites evolve herbicide resistance? </p><p> 24.4 Biotechnologically directly conferring crop resistance to the parasites </p><p> 24.5 Other biotechnological approaches </p><p> 24.6 Conclusions</p><p>References</p><p>25. Allelopathy <br/>John A. Pickett, Antony M. Hooper, Charles A.O. Midega and Zeyaur R. Khan</p><p> 25.1 Introduction</p><p> 25.2 Allelopathic mechanism by which Desmodium controls Striga in maize</p><p> 25.3 Long term needs</p><p> 25.4 Conclusions</p><p>References</p><p>26. Biocontrol<br/>Alan K. Watson</p><p> 26.1 Introduction</p> 26.2 Insects attacking broomrapes and witchweeds <p></p><p> 26.3 Biocontrol of parasitic weeds with microorganisms </p><p> 26.4 Path to commercialization of a Striga bioherbicide</p><p> 26.5 Conclusions and future possibilities</p><p>References</p><p> </p><p>Index</p><p></p>