Construction Reliability

Safety, Variability and Sustainability

Gebonden Engels 2011 9781848212305
Verwachte levertijd ongeveer 16 werkdagen

Samenvatting

This book provides answers to the following problems: how to identify the most probable critical failures; how to describe and use data–concerning materials that are either heterogeneous, time–variant, or space–variant; how to quantify the reliability and lifetime of a system; how to use feedback information to actualize reliability results; and how to optimize an inspection politic or a maintenance strategy. Numerous authors from public research centers and firms propose a synthesis of methods, both new and well–known, and offer numerous examples concerning dams, geotechnical study, and structures from nuclear and civil engineering.

Specificaties

ISBN13:9781848212305
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:364
Serie:ISTE

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

<p>Preface xiii<br /> Julien BAROTH, Franck SCHOEFS and Denys BREYSSE</p>
<p>Introduction xvii<br /> Julien BAROTH, Alaa CHATEAUNEUF and Franck SCHOEFS</p>
<p>PART 1. QUALITATIVE METHODS FOR EVALUATING THE RELIABILITY OF CIVIL ENGINEERING STRUCTURES 1</p>
<p>Introduction to Part 1 3</p>
<p>Chapter 1. Methods for System Analysis and Failure Analysis 5<br /> Daniel BOISSIER, Laurent PEYRAS and Aur&eacute;lie TALON</p>
<p>1.1. Introduction 5</p>
<p>1.2. Structural analysis 7</p>
<p>1.3. Functional analysis 10</p>
<p>1.4. Failure Modes and Effects Analysis (FMEA) 14</p>
<p>1.5. Bibliography 19</p>
<p>Chapter 2. Methods for Modeling Failure Scenarios 21<br /> Daniel BOISSIER, Laurent PEYRAS and Aur&eacute;lie TALON</p>
<p>2.1. Introduction 21</p>
<p>2.2. Event tree method 22</p>
<p>2.3. Fault tree method 24</p>
<p>2.4. Bow–tie method 26</p>
<p>2.5. Criticality evaluation methods 29</p>
<p>2.6. Bibliography 34</p>
<p>Chapter 3. Application to a Hydraulic Civil Engineering Project 37<br /> Daniel BOISSIER, Laurent PEYRAS and Aur&eacute;lie TALON</p>
<p>3.1. Context and approach for an operational reliability study 37</p>
<p>3.2. Functional analysis and failure mode analysis 39</p>
<p>3.3. Construction of failure scenarios 42</p>
<p>3.4. Scenario criticality analysis 44</p>
<p>3.5. Application summary 50</p>
<p>3.6. Bibliography 51</p>
<p>PART 2. HETEROGENEITY AND VARIABILITY OF MATERIALS: CONSEQUENCES FOR SAFETY AND RELIABILITY 53</p>
<p>Introduction to Part 2 55</p>
<p>Chapter 4. Uncertainties in Geotechnical Data 57<br /> Denys BREYSSE, Julien BAROTH, Gilles CELEUX, Aur&eacute;lie TALON and Daniel BOISSIER</p>
<p>4.1. Various sources of uncertainty in geotechnical engineering 57</p>
<p>4.2. Erroneous, censored and sparse data 62</p>
<p>4.3. Statistical representation of data 64</p>
<p>4.4. Data modeling 66</p>
<p>4.5. Conclusion 74</p>
<p>4.6. Bibliography 74</p>
<p>Chapter 5. Some Estimates on the Variability of Material Properties 77<br /> Denys BREYSSE and Antoine MARACHE</p>
<p>5.1. Introduction 77</p>
<p>5.2. Mean value estimation 77</p>
<p>5.3. Estimation of characteristic values 82</p>
<p>5.4. Principles of a geostatistical study 86</p>
<p>5.5. Bibliography 96</p>
<p>Chapter 6. Reliability of a Shallow Foundation Footing 97<br /> Denys BREYSSE</p>
<p>6.1. Introduction 97</p>
<p>6.2. Bearing capacity models for strip foundations modeling errors 98</p>
<p>6.3. Effects of soil variability on variability in bearing capacity and safety of the foundation 101</p>
<p>6.4. Taking account of the structure of the spatial correlation and its influence on the safety of the foundation 109</p>
<p>6.5. Conclusions 115</p>
<p>6.6. Bibliography 117</p>
<p>PART 3. METAMODELS FOR STRUCTURAL RELIABILITY 119</p>
<p>Introduction to Part 3 121</p>
<p>Chapter 7. Physical and Polynomial Response Surfaces 123<br /> Fr&eacute;d&eacute;ric DUPRAT, Franck SCHOEFS and Bruno SUDRET</p>
<p>7.1. Introduction 123</p>
<p>7.2. Background to the response surface method 124</p>
<p>7.3. Concept of a response surface 125</p>
<p>7.4. Usual reliability methods 131</p>
<p>7.5. Polynomial response surfaces 133</p>
<p>7.6. Conclusion 143</p>
<p>7.7. Bibliography 143</p>
<p>Chapter 8. Response Surfaces based on Polynomial Chaos Expansions 147<br /> Bruno SUDRET, G&eacute;raud BLATMAN and Marc BERVEILLER</p>
<p>8.1. Introduction 147</p>
<p>8.2. Building of a polynomial chaos basis 149</p>
<p>8.3. Computation of the expansion coefficients 151</p>
<p>8.4. Applications in structural reliability 158</p>
<p>8.5. Conclusion 164</p>
<p>8.6. Bibliography 165</p>
<p>PART 4. METHODS FOR STRUCTURAL RELIABILITY OVER TIME 169</p>
<p>Introduction to Part 4 171</p>
<p>Chapter 9. Data Aggregation and Unification 173<br /> Daniel BOISSIER and Aur&eacute;lie TALON</p>
<p>9.1. Introduction 173</p>
<p>9.2. Methods of data aggregation and unification 173</p>
<p>9.3. Evaluation of evacuation time for an apartment in case of fire 181</p>
<p>9.4. Conclusion 185</p>
<p>9.5. Bibliography 185</p>
<p>Chapter 10. Time–Variant Reliability Problems 187<br /> Bruno SUDRET</p>
<p>10.1. Introduction 187</p>
<p>10.2. Random processes 188</p>
<p>10.3. Time–variant reliability problems 192</p>
<p>10.4. PHI2 method 197</p>
<p>10.5. Industrial application: truss structure under time–varying loads 202</p>
<p>10.6. Conclusion 204</p>
<p>10.7. Bibliography 205</p>
<p>Chapter 11. Bayesian Inference and Markov Chain Monte Carlo Methods 207<br /> Gilles CELEUX</p>
<p>11.1. Introduction 207</p>
<p>11.2. Bayesian Inference 208</p>
<p>11.3. MCMC methods for weakly informative data 210</p>
<p>11.4. Estimating a competing risk model from censored and incomplete data 219</p>
<p>11.5. Conclusion 225</p>
<p>11.6. Bibliography 225</p>
<p>Chapter 12. Bayesian Updating Techniques in Structural Reliability 227<br /> Bruno SUDRET</p>
<p>12.1. Introduction 227</p>
<p>12.2. Problem statement: link between measurements and model prediction 228</p>
<p>12.3. Computing and updating the failure probability 229</p>
<p>12.4. Updating a confidence interval on response quantities 233</p>
<p>12.5. Bayesian updating of the model basic variables 235</p>
<p>12.6. Updating the prediction of creep strains in containment vessels of nuclear power plants 238</p>
<p>12.7. Conclusion 245</p>
<p>12.8. Acknowledgments 246</p>
<p>12.9. Bibliography 246</p>
<p>PART 5. RELIABILITY–BASED MAINTENANCE OPTIMIZATION 249</p>
<p>Introduction to Part 5 251</p>
<p>Chapter 13. Maintenance Policies 253<br /> Alaa CHATEAUNEUF, Franck SCHOEFS and Bruno CAPRA</p>
<p>13.1. Maintenance 253</p>
<p>13.2. Types of maintenance 257</p>
<p>13.3. Maintenance models 262</p>
<p>13.4. Conclusion 269</p>
<p>13.5. Bibliography 269</p>
<p>Chapter 14. Maintenance Cost Models 271<br /> Alaa CHATEAUNEUF and Franck SCHOEFS</p>
<p>14.1. Preventive maintenance 271</p>
<p>14.2. Maintenance based on time 273</p>
<p>14.3. Maintenance based on age 275</p>
<p>14.4. Inspection models 276</p>
<p>14.5. Structures with large lifetimes 283</p>
<p>14.6. Criteria for choosing a maintenance policy 284</p>
<p>14.7. Example of a corroded steel pipeline 285</p>
<p>14.8. Conclusion 290</p>
<p>14.9. Bibliography 290</p>
<p>Chapter 15. Practical Aspects: Industrial Implementation and Limitations in a Multi–criteria Context 293<br /> Franck SCHOEFS and Bruno CAPRA</p>
<p>15.1. Introduction 293</p>
<p>15.2. Motorway concession with high performance requirements 296</p>
<p>15.3. Ageing of civil engineering structures: using field data to update predictions 303</p>
<p>15.4. Conclusion 307</p>
<p>15.5. Bibliography 308</p>
<p>Conclusion 311<br /> Julien BAROTH, Franck SCHOEFS and Denys BREYSSE</p>
<p>List of Symbols 315</p>
<p>List of Authors 323</p>
<p>Index 325</p>

Managementboek Top 100

Rubrieken

Populaire producten

    Personen

      Trefwoorden

        Construction Reliability