

Clinton Brownley, Ph.D., is a data scientist at Facebook, where he is responsible for a wide variety of data pipelining, statistical modeling, and data visualization projects that inform data-driven decisions about large-scale infrastructure.
Meer over Clinton BrownleyFoundations for Analytics with Python
Paperback Engels 2016 1e druk 9781491922538Samenvatting
If you’re like many of Excel’s 750 million users, you want to do more with your data—like repeating similar analyses over hundreds of files, or combining data in many files for analysis at one time. This practical guide shows ambitious non-programmers how to automate and scale the processing and analysis of data in different formats—by using Python.
After author Clinton Brownley takes you through Python basics, you’ll be able to write simple scripts for processing data in spreadsheets as well as databases. You’ll also learn how to use several Python modules for parsing files, grouping data, and producing statistics. No programming experience is necessary.
- Create and run your own Python scripts by learning basic syntax
- Use Python’s csv module to read and parse CSV files
- Read multiple Excel worksheets and workbooks with the xlrd module
- Perform database operations in MySQL or with the mysqlclient module
- Create Python applications to find specific records, group data, and parse text files
- Build statistical graphs and plots with matplotlib, pandas, ggplot, and seaborn
- Produce summary statistics, and estimate regression and classification models
- Schedule your scripts to run automatically in both Windows and Mac environments
Specificaties
Lezersrecensies
Inhoudsopgave
U kunt van deze inhoudsopgave een PDF downloaden
1. Python Basics
-How to Create a Python Script
-How to Run a Python Script
-Useful Tips for Interacting with the Command Line
-Python’s Basic Building Blocks
-Reading a Text File
-Reading Multiple Text Files with glob
-Writing to a Text File
-print Statements
-Chapter Exercises
2. Comma-Separated Values (CSV) Files
-Base Python Versus pandas
-Filter for Specific Rows
-Select Specific Columns
-Select Contiguous Rows
-Add a Header Row
-Reading Multiple CSV Files
-Concatenate Data from Multiple Files
-Sum and Average a Set of Values per File
-Chapter Exercises
3. Excel Files
-Introspecting an Excel Workbook
-Processing a Single Worksheet
-Reading All Worksheets in a Workbook
-Reading a Set of Worksheets in an Excel Workbook
-Processing Multiple Workbooks
-Chapter Exercises
4. Databases
-Python’s Built-in sqlite3 Module
-MySQL Database
-Chapter Exercises
5. Applications
-Find a Set of Items in a Large Collection of Files
-Calculate a Statistic for Any Number of Categories from Data in a CSV File
-Calculate Statistics for Any Number of Categories from Data in a Text File
-Chapter Exercises
6. Figures and Plots
-matplotlib
-pandas
-ggplot
-seaborn
7. Descriptive Statistics and Modeling
-Datasets
-Wine Quality
-Customer Churn
8. Scheduling Scripts to Run Automatically
-Task Scheduler (Windows)
-The cron Utility (macOS and Unix)
9. Where to Go from Here
-Additional Standard Library Modules and Built-in Functions
-Python Package Index (PyPI): Additional Add-in Modules
-Additional Data Structures
-Where to Go from Here
Appendix A: Download Instructions
Appendix B: Answers to Exercises
Index
Anderen die dit boek kochten, kochten ook
Rubrieken
- advisering
- algemeen management
- coaching en trainen
- communicatie en media
- economie
- financieel management
- inkoop en logistiek
- internet en social media
- it-management / ict
- juridisch
- leiderschap
- marketing
- mens en maatschappij
- non-profit
- ondernemen
- organisatiekunde
- personal finance
- personeelsmanagement
- persoonlijke effectiviteit
- projectmanagement
- psychologie
- reclame en verkoop
- strategisch management
- verandermanagement
- werk en loopbaan